Skip to main content
Log in

Divergence of epidermal growth factor-transforming growth factorß signaling in embryonic orofacial tissue

  • Articles
  • Signal Transduction
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The epidermal growth factor (EGF) and transforming growth factor β (TGFβ) families of signaling molecules play a major role in growth and development of embryos. Abrogation of either signaling pathway results in defects in embryogenesis, including cleft palate. In the developing palate, both EGF and TGFβ regulate cellular proliferation, extracellular matrix synthesis, and cellular differentiation but often in an opposing manner. Evidence from various adult cell types suggests the existence of cross talk between the EGF and TGFβ signaling pathways, although it is unclear whether such cross talk exists in murine embryonic maxillary mesenchymal cells, from which the developing palate is derived. In this study, embryonic maxillary mesenchymal cells in culture were treated with EGF and TGFβ, either singly or in combination, and the cells were subsequently examined for signaling interactions between these two pathways. Immunoblot analyses of nuclear extracts of embryonic maxillary mesenchymal cells revealed that TGFβ-induced nuclear translocation of Smad 2 and Smad 3 proteins was not affected by EGF. Conversely, immunoblot analyses of whole-cell extracts of these cells indicated that EGF-induced phosphorylation of extracellular signal-regulated kinase proteins, ERK1 and ERK2, was not affected by TGFβ. Expression of a transfected luciferase reporter gene driven by a promoter with Smad binding elements was induced by TGFβ in these cells but was not affected by EGF. Last, TGFβ was found to induce expression of the endogenous gelatinase B gene in embryonic maxillary mesenchymal cells; however, this effect was independent of any interaction of EGF. Collectively, data from this study suggest that the EGF and TGFβ signal transduction pathways do not converge in murine embryonic maxillary mesenchymal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brown, N.; Yarram, S.; Mansell, J.; Sandy, J. Matrix metalloproteinases have a role in palatogenesis. J. Dent. Res. 81:826–830; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Brunet, C.; Sharpe, P.; Ferguson, M. Inhibition of TGF-β3 (but not TGF-β1 or TGF-β2) activity prevents normal mouse embryonic palate fusion. Int. J. Dev. Biol. 39:345–355; 1995.

    PubMed  CAS  Google Scholar 

  • D'Angelo, M.; Chen, J.; Ugen, K.; Greene, R. TGFβ1 regulation of collagen metabolism by embryonic palate mesenchymal cells. J. Exp. Zool. 270:189–201; 1994.

    Article  PubMed  Google Scholar 

  • D'Angelo, M.; Greene, R. Transforming growth factor β modulation of glycosaminoglycan production by mesenchymal cells of the developing murine secondary palate. Dev. Biol. 145:374–378; 1991.

    Article  PubMed  Google Scholar 

  • Doetschman, T. Interpretation of phenotype in genetically engineered mice. Lab. Anim. Sci. 49:137–143; 1999.

    PubMed  CAS  Google Scholar 

  • Funaba, M.; Zimmerman, C.; Mathews, L. Modulation of Smad2-mediated signaling by extracellular signal-regulated kinase. J. Biol. Chem. 277:41361–41368; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Gehris, A.; Greene, R. Regulation of murine embryonic epithelial cell differentiation by transforming growth factors β. Differentiation 49:167–173; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Greene, R.; Nugent, P.; Mukhopadhyay, P.; Warner, D.; Pisano, M. Intracellular dynamics of Smad-mediated TGFβ signaling. J. Cell. Phys. 197:261–271; 2003.

    Article  CAS  Google Scholar 

  • Greene, R.; Pisano, M. Pathways to transcription. Teratology 62:10–13; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Greene, R.; Weston, W.; Nugent, P., et al. Signal transduction pathways as targets for induced embryotoxicity. In: Slikker, W.; Chang, L., ed. Handbook of developmental neurotoxicology, chap. 5. San Diego, CA: Academic Press; 1998:119–139.

    Google Scholar 

  • Han, Y.-H.; Tuan, T.-L.; Hughes, M.; Wu, H.; Garner, W. Transforming growth factor-β- and tumor necrosis factor-α-mediated induction and proteolytic activation of MMP-9 in human skin. J. Biol. Chem. 276:22341–22350; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Kaartinen, V.; Voncken, I.; Schuler, C.; Warburton, D.; Bu, D.; Heisterkamp, N.; Groffen, J. Abnormal lung development and cleft palate in mice lacking TGF-β3 indicates defects of epithelial-mesenchymal interaction. Nat. Genet. 11:415–421; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar, M.; Doody, J.; Massagué, J. Opposing BMP and EGF signalling pathways converge on the TGFβ family mediator Smad 1. Nature 389:618–622; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Kusek, J.; Greene, R.; Nugent, P.; Pisano, M. Expression of the E2F family of transcription factors during murine development. Int. J. Dev. Biol. 44:267–277; 2000.

    PubMed  CAS  Google Scholar 

  • Leammli, U. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.

    Article  Google Scholar 

  • Lehmann, K.; Janda, E.; Pierreux, C., et al. Raf induces TGFβ production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev. 14:2610–2622; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Linask, K. K.; D'Angelo, M.; Gehris, A. L.; Greene, R. M. Transforming growth factor-beta receptor profiles of human and murine palate mesenchymal cells. Exp. Cell. Res. 192:1–9; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Lo, R.; Wotton, D.; Massagué, J. Epidermal growth factor signaling via RAS controls the Smad transcriptional co-repressor TGIF. EMBO J. 20:128–136; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Marais, R.; Wynne, J.; Treisman, R. The SRF accessory protein Elk-1 contains a growth factor regulated transcriptional activation domain. Cell 73:381–393; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Massagué, J. TGFβ signal transduction. Ann. Rev. Biochem. 67:753–792; 1998.

    Article  PubMed  Google Scholar 

  • Massagué, J.; Wotton, D. Transcriptional control by the TGFβ/Smad signaling system. EMBO J. 19:1745–1754; 2000.

    Article  PubMed  Google Scholar 

  • Miyazono, K.; Kusanagi, K.; Inoue, H. Divergence and convergence of TGFβ/BMP signaling. J. Cell. Phys. 187:265–276; 2001.

    Article  CAS  Google Scholar 

  • Pisano, M. M.; Greene, R. M. Hormone and growth factor involvement in craniofacial development. ICRS Med. Sci. Forum Article 14:635–640; 1986.

    CAS  Google Scholar 

  • Pisano, M. M.; Greene, R. M. Epidermal growth factor potentiates the induction of ornithine decarboxylase activity by prostaglandins in embryonic palate mesenchymal cells: effects on cell proliferation and glycosaminoglycan synthesis. Dev. Biol. 122:419–431; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Potchinsky, M.; Lloyd, M.; Weston, W.; Greene, R. Selective modulation of MAP kinase in embryonic palate cells. J. Cell. Phys. 176:266–280; 1998.

    Article  CAS  Google Scholar 

  • Pratt, R.; Kim, C.; Grove, R. Role of glucocorticoids and epidermal growth factor in normal and abnormal palate development. In: Zimmerman, E., ed. Current topics in developmental biology. Vol. 19. New York: Academic Press; 1984:81–101.

    Google Scholar 

  • Proetzel, G.; Pawlowski, S. A.; Wiles, M. V., et al. Transforming growth factorbeta 3 is required for secondary palate fusion. Nat. Genet. 11:409–414; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Sanford, L. P.; Ormsby, I.; Gittenberger-de Groot, A. C.; Sariola, H.; Friedman, R.; Boivin, G. P.; Cardell, E. L.; Doetschman, T. TGFbeta2 knockout mice have multiple developmental defects that are nonoverlapping with other TGFbeta knockout phenotypes. Development 124:2659–2670; 1997.

    PubMed  CAS  Google Scholar 

  • Silver, M.; Murray, J. C.; Pratt, R. M. Epidermal growth factor stimulates type-V collagen synthesis in cultured murine palatal shelves. Differentiation 27:205–208; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Turley, E. A.; Hollenburg, M. D.; Pratt, R. M. Effect of epidermal growth factor/urogesterone on glycosaminoglycan synthesis and accumulation in vitro in the developing mouse palate. Differentiation 28:279–285; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, H.; de Caestecker, M.; Yamada, Y. Transcriptional cross-talk between Smad, ERK1/2, and p38 mitogen-activated protein kinase pathways regulates transforming growth factor-β-induced aggrecan gene expression in chondrogenic ATDC5 cells. J. Biol. Chem. 276:14466–14473; 2001.

    PubMed  CAS  Google Scholar 

  • Weston, W.; Potchinsky, M.; Lafferty, C.; Ma, L.; Greene, R. Cross-talk between signaling pathways in murine embryonic palate cells: effect of TGFβ and cAMP on EGF-induced DNA synthesis. In Vitro Cell. Dev. Biol. 34A:74–78; 1998.

    Google Scholar 

  • Wong, C.; Rougier-Chapman, E.; Frederick, J.; Datto, M.; Liberti, N.; Wang, X.-F. Smad 3-Smad 4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor β. Mol. Cell Biol. 19:1821–1830; 1999.

    PubMed  CAS  Google Scholar 

  • Wrana, J.; Attisano, L.; Carcamo, J.; Zentella, A.; Doody, J.; Laiho, M.; Wang, X.-F.; Massagué, J. TGFβ signals through a heteromeric protein kinase receptor complex. Cell 71:1003–1014; 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasker Bhattacherjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacherjee, V., Greene, R.M. & Pisano, M.M. Divergence of epidermal growth factor-transforming growth factorß signaling in embryonic orofacial tissue. In Vitro Cell.Dev.Biol.-Animal 39, 257–261 (2003). https://doi.org/10.1290/1543-706X(2003)039<0257:DOEGFG>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1543-706X(2003)039<0257:DOEGFG>2.0.CO;2

Key words

Navigation